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ABSTRACT

We address the task of image classification, when the avail-
able spectral bands can vary from image to image. We pro-
pose a model that learns to represent uncertainty over latent
features in a way that is conditioned on the available bands.
We expect that images with fewer bands will generally be
more difficult to classify and hence have higher uncertainty.
We compare two strategies for training such a model, one
which uses explicit hierarchical constraints and one which re-
lies on implicit constraints. We evaluate both using RGB and
multispectral imagery from the EuroSat dataset and find that
the hierarchical approach improves the compatibility of the
resulting distributions without sacrificing accuracy.

1. INTRODUCTION

In many scenarios, we may have incomplete information
about a given scene. For example, if trying to identify land-
scape features, we may have RGB imagery available for some
areas, but only IR imagery for others, or vice versa. We show
that we can take advantage of the cases where we have com-
plete sets of information to make more informed predictions
when presented with partial information. In most such work,
the features of a scene are represented by a vector in a latent
space. We move to a probabilistic setting, and capture the
inherent uncertainty in measurement by representing features
with a Gaussian probability distribution over the latent vector
space.

We define a view of a scene to be a collection of image
channels. A sub-view has a subset of the channels of a given
view, and a super-view contains more channels than the view.
We employ a hierarchical training scheme, which enforces
a relationship between feature distributions corresponding to
sub-views and super-views. We demonstrate that this training
scheme provides us with a natural progression of feature dis-
tributions in which uncertainty decreases as the the amount of
information increases. In addition, we show that enforcing the
hierarchy leads to more accurate predictions on downstream
classification tasks.

We demonstrate our method on RGB images and 13 chan-
nel multispectral bands from the EuroSat land classification
dataset [1]. To represent partial information, we divide the

overhead RGB images into separate R, G, and B channels, as
well as the combinations RG, RB, and GB. In this way, for
each RGB image, we have seven different views fitting into
a sub-view/super-view hierarchy. The split for the full multi-
spectral version is discussed in Section 4.3.

Our contributions include: (1) a method using Gaussian
distributions to capture uncertainty in feature representations
given incomplete information; (2) a hierarchical training
scheme, based on the relationship between views and sub-
views of scenes; and (3) evaluation of our method on accuracy
and uncertainty quantification.

2. RELATED WORK

Multi-view Feature Embedding: Image feature embedding
aims aims to learn a mapping from a set of images to a low-
dimensional metric space such that the mappings of similar
images are close together and those of dissimilar images are
far apart [2, 3]. Multi-view embedding has been considered
in various contexts, including action recognition [4], image
geolocalization [5, 6, 7, 8, 9], and 3D geometry [10]. Methods
based on auto-encoders [4,10] learn a common representation
space where examples are recoverable through view-specific
decoders. In contrast, retrieval based methods [5, 6, 7, 8, 9,
11] are optimized for finding matching examples from other
viewpoints through a nearest neighbors lookup. In settings
where there is a known geometric relationship between views,
geometric operations can be embedded into the model or the
loss to improve performance [6, 7, 8].

Probabilistic Embedding: Reasoning about distributions
of representations in cases where there is possible uncertainty
in matched data [10, 12, 13, 14] has proven to be effective in
a variety of situations. For face recognition, predicting an
embedding and an associated variance was found to improve
matching accuracy between low quality and high quality im-
ages [12, 14]. Probabilistic embeddings have also been used
in autoencoder based embedding learning [15] and image seg-
mentation [16].

3. PROBLEM STATEMENT AND APPROACH

Given multiple views of a scene, for example an RGB and an
IR image, we aim to jointly learn a feature representation of
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Fig. 1: (a) Nested hierarchy of views of RGB channels for EuroSat data. During training, we enforce the hierarchy by computing
Bhattacharyya distance between distributions connected by an edge in the graph. (b) Training flow for hierarchical probabilistic
embeddings using R and RGB channels. The input views are passed through parallel encoders which produce the parameters
of a Gaussian distribution. Each encoder is a separate ResNet18. The weights on the MLP classifier are shared.

both views that captures the uncertainty inherent in the input
view. We could also learn an embedding given both views as
input. In this case, we expect the representation from the sub-
views, RGB and IR, to be less certain than the representation
from the joint-view, RGB + IR.

We learn a representation for the features f of an object
as a probability distribution over a latent vector space in Rd.
We show that the uncertainty of the distribution reflects the
amount of information presented by the input view. The hier-
archy of views and sub-views forms a directed acyclic graph.
See Figure 1 for an example of the directed acyclic graph of
views for RGB channels.

3.1. Hierarchy of Probability Distributions

Views and sub-views obey a hierarchical ordering. The fea-
ture distributions corresponding to a view and its sub-views
should also obey such a hierarchical ordering, where samples
from the distribution corresponding to a super-view look like
samples from a sub-view distribution.

We take all feature distributions to be multivariate Gaussian
with diagonal covariance. Let v0 be the null-view, with no
input information. This is considered to be a sub-view of any
other view. The probability distribution for v0 is defined to be
P (f |v0) = N(0,1).

3.2. Multi-Modal Embedding Architecture

We treat each image channel and/or grouping of input chan-
nels as a separate view. The inputs are fed through a distinct
ResNet18 CNN [17] corresponding to the input view. The
output of the ResNets are then given to a shared probability
module. The module consists of two fully connected layers
which produce the parameters of the multivariate Gaussian.
We then classify by passing a sample from the Gaussian dis-
tribution through a small MLP. For an overview of the training
process for two views, see Figure 1.

3.3. Training Process

The loss function is split into: classification, hierarchy, and
marginal statistics. It is given by

L = Lc + λhLh + λmLm

where the weights λh and λm are fixed before training.
We calculate the classification loss, Lc by drawing a sam-

ple from each feature distribution, and classifying using Soft-
Max Loss against the label. The reparametrization trick [18]
is used to sample from the distribution, allowing backpropa-
gation.

The hierarchical loss, Lh, represents the loss of informa-
tion between nested views of the same image. We take
the Bhattacharyya distance between distributions that share
a super-view/sub-view relationship. Although we expect the
hierarchy of probability distributions to arise naturally dur-
ing training, we find explicit enforcement of the hierarchy
through direct comparison leads to a more stable training pro-
cess and encourages learning of aligned distributions with a
trend of decreasing uncertainty (see Section 4.2). The Bhat-
tacharyya distance is fast to compute, and we have found it
to be more effective than several natural alternatives, such as
Earth Mover’s Distance or KL Divergence.

The marginal statistics loss, Lm, also serves as a regu-
larization term for the distributions. The marginal statistics
for a view vi with respect to the null-view v0, are given by
N(0,1) = p(f |v0) =

∫
vi
p(f |vi)p(vi)dvi. That is, the av-

erage distribution corresponding to the view vi across the
dataset will be standard normal. In practice, we enforce the
marginal statistics at the minibatch level. Given a minibatch
of size N , corresponding to views {v(i)k }Ni=1, we first find
the Gaussian that minimizes KL-divergence to the mini-batch
mixture 1

N

∑N
i=1 P (f |v

(i)
k ), where P (f |v(i)k ) = N(ai, Ai).

This is given by N(b, B) with:

b =

N∑
i=1

1

N
ai, B =

N∑
i=1

1

N
(Ai + aia

>
i − bb>).
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We then enforce the marginal statistics during training with

Lm = DKL(N(b, B), N(0,1)),

where DKL is the KL-divergence.

4. EVALUATION

We evaluate our approach on the EuroSat dataset, which
consists of Sentinel-2 imagery over 34 European countries.
Patches from these images were extracted and classified into
one of 10 classes: industrial buildings, residential buildings,
annual crop, permanent crop, river, sea & lake, herbaceous
vegetation, highway, pasture, and forest. The patches mea-
sure 64 × 64 pixels. There are 27,000 images in the EuroSat
dataset. We use an 80/20 split of training to testing data. We
examine our methods on both RGB and 13-channel multi-
spectral images. For RGB imagery, we take advantage of a
complete set of views and sub-views, by using each combina-
tion of R, G, and B channels. For multispectral data, we use
the selected grouping of channels discussed in Section 4.3.

4.1. Implementation Details

We first train the multi-modal embedding network on the di-
rected acyclic graph of RGB views, as depicted in Figure 1.
We set the weights in the loss function to λh = .05 and
λm = 1. For ease of training and visualization, we embed
features as Gaussian distributions over a 2-dimensional latent
space.

For comparison, we train the same architecture without en-
forcing the hierarchy. In this case, we take only the Bhat-
tacharyya distance from each distribution to the standard nor-
mal distribution corresponding to the null view. Note that this
is similar to the training method used for probabilistic face
embeddings described in [14] with Bhattacharyya distance re-
placing KL-divergence.

4.2. Results

We measure the accuracy and average variance for the multi-
view embeddings in Table 1. When trained with hierarchy
enforcement, the accuracy increases and average variance de-
creases as more views are given to the network. We compare
this to another model with the same architecture trained with-
out enforcing the hierarchy. In this case, the accuracy follows
the expected progression as views increase, but the average
variance does not. This suggests that without enforcing the hi-
erarchy during training, the learned distributions coming from
different views are not directly comparable to each other. The
network is learning the embeddings independently, and so un-
certainty in input view is not reflected by the variance of the
feature distributions.

We also include a comparison of log-likelihoods to mea-
sure the nesting of distributions. We take the distribution from

Hierarchy Enforced

Channels Accuracy Avg. Variance Log-likelihood

R 0.8515 0.0239 -3.8314
G 0.8378 0.0230 -5.8161
B 0.7641 0.0232 -3.9687
RG 0.8954 0.0217 -1.4938
RB 0.8878 0.0215 -2.000
GB 0.9044 0.0211 -1.749
RGB 0.9270 0.0200 -

Hierarchy Not Enforced

R 0.8559 0.0172 -12.1669
G 0.8546 0.0213 -11.7454
B 0.7267 0.0174 -16.8876
RG 0.8920 0.0183 -6.2442
RB 0.8874 0.0205 -5.4862
GB 0.9000 0.0172 -4.3706
RGB 0.9243 0.0203 -

Table 1: Accuracy, average uncertainty, and average log-
likelihood on RGB channels from EuroSat, using a 2-
dimensional embedding. For log-likelihood we compute the
average log-likelihood of 100 samples of the full RGB view.

Fig. 2: For each test image, we extract a feature distribution
and take 50,000 samples before running each sample through
the classifier. The number of unique predicted classes among
the samples is presented.

each sub-view and calculate the average log probability at 100
samples of the distribution from the full RGB view. The re-
sults are averaged throughout the test set. The higher average
log-likelihood when hierarchy is enforced demonstrates that
samples from super-view distributions are compatible with
samples from sub-view distributions, whereas this is not the
case without hierarchy enforcement.

Another measure of the view-based uncertainty is shown
in Figure 2. For each test image, we take 50,000 samples
from the feature distribution and plot the number of unique
predicted classifications resulting from these samples. The
majority of the time, the distribution from an RGB image pre-
dicts a single classification, whereas the distribution coming
from a single channel view more often has two or more pos-
sible classifications.
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Hierarchy Enforced

Channels Accuracy Avg. Variance Log-likelihood

Aerosol (1) 0.5753 0.0331 -6.000
Vapor/Cirrus (2) 0.7948 0.0380 -1.7700
RGB (3) 0.9241 0.0439 -1.580
Red Edge (4) 0.9066 0.0412 -0.4456
NIR (1) 0.8430 0.0386 -1.1418
SWIR (2) 0.9107 0.0414 0.0766
Atmosphere (3) 0.8839 0.0287 -0.4380
RGB + Edge (7) 0.9312 0.0270 -0.4892
IR (3) 0.9222 0.0266 -.1499
Full (13) 0.9628 0.0260 -

Hierarchy Not Enforced

Aerosol (1) 0.5958 0.0134 -77.0801
Vapor/Cirrus (2) 0.7984 0.0193 -51.4137
RGB (3) 0.8402 0.0208 -20.4798
Red Edge 1-4 (4) 0.9139 0.0224 -9.9356
NIR (1) 0.8413 0.0188 -39.7989
SWIR (2) 0.8923 0.0199 -25.3889
Atmosphere (3) 0.8371 0.0214 -24.0449
RGB + Edge (7) 0.9369 0.0255 -8.1741
IR (3) 0.8735 0.0191 -25.41
Full (13) 0.9561 0.0236 -

Table 2: Accuracy, average uncertainty, and average log-
likelihood on the 13-channel multispectral EuroSat dataset,
using a 2-dimensional embedding. Number of image chan-
nels is indicated in parentheses.

4.3. Multispectral Data

For our final evaluation, we use all 13 spectral bands of the
EuroSat dataset. Due to the exponential number of possible
sub-views given the quantity of channels, we do not use all
possible views, but instead break the data into the collection
of aligned, nested views seen in Table 2. Here the Atmosphere
view contains the Aerosol, Vapor, and Cirrus channels, IR
contains both NIR and SWIR channels, and RGB+Edge con-
tains the three color channels as well as four Red Edge chan-
nels. We compare trends in accuracy and average variance,
as well log-likelihoods to the full 13-channel view in Table 2.
Again, we see a natural trend of variances and log-likelihoods
only when enforcing the hierarchy during training.

5. CONCLUSION

We introduced an approach for learning a hierarchical, prob-
abilistic feature embedding where we expect varying quanti-
ties of information at inference time. Our approach makes it
possible to achieve uncertainty estimations for feature distri-
butions coming from sources with variable bands of informa-
tion.
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