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ABSTRACT

We address the task of monocular depth estimation in the
multi-domain setting. Given a large dataset (source) with
ground-truth depth maps, and a set of unlabeled datasets
(targets), our goal is to create a model that works well
on unlabeled target datasets across different scenes. This
is a challenging problem when there is a significant do-
main shift, often resulting in poor performance on the target
datasets. We propose to address this task with a unified ap-
proach that includes adversarial knowledge distillation and
uncertainty-guided self-supervised reconstruction. We pro-
vide both quantitative and qualitative evaluations on four
datasets: KITTI, Virtual KITTI, UAVid China, and UAVid
Germany. These datasets contain widely varying viewpoints,
including ground-level and overhead perspectives, which is
more challenging than is typically considered in prior work
on domain adaptation for single-image depth. Our approach
significantly improves upon conventional domain adaptation
baselines and does not require additional memory as the
number of target sets increases.

1. INTRODUCTION

Conventional deep neural networks often generalize poorly to
new domains, and Domain Adaptation (DA) methods aim to
solve this problem by adapting a model trained on a label-
rich source domain to a label-scarce target domain. Recently,
most studies on domain adaptation have focused on the single
target-domain setting [1], in which only one target domain is
considered at a time. However, in many real-world scenarios,
test data may be collected from various sources and domains.
With the increasing prevalence of unmanned aerial vehicles
(UAVs) and unmanned ground vehicles (UGVs), the need to
adapt networks across such viewpoint shifts is increasingly
important. Therefore, we consider the problem of domain
adaptation between videos collected from UAVs and UGVs.
For both UAVs and UGVs, monocular depth estimation [2]
is an important fundamental task, but obtaining ground-truth
depth annotations is difficult and expensive. Therefore, devel-
oping a method that can effectively adapt one source-trained
model to multiple target datasets is important for both domain
adaptation and monocular depth estimation tasks.
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To exploit the temporal information stored in the video
sequences, we propose an uncertainty-guided self-supervised
reconstruction module and apply it to the unlabeled target im-
agery. This requires both depth estimates and relative pose
estimates. Therefore, in addition to depth estimation, our net-
work is also trained to predict the relative pose between two
adjacent frames. This reconstruction loss does not require
ground-truth depths or camera poses, making it easy to ap-
ply to new target domains. To further improve the reliabil-
ity of the self-supervised reconstruction, we estimate the un-
certainty map by computing the average reconstruction error
map from four adjacent frames in the video sequence. Pixels
with higher uncertainty will be down-weighted in the recon-
struction loss during training.

Our contributions include: (1) an adversarial knowl-
edge distillation framework that can bridge the domain gaps
between the source and multiple targets without requiring
additional memory as the number of targets increases; (2)
an uncertainty-guided, self-supervised reconstruction loss
that can be easily applied to unlabeled new domains; (3)
evaluation on diverse datasets, which include real, synthetic,
ground-level, and aerial images, and demonstrate that our
model significantly reduces issues due to domain shift.

2. APPROACH

We introduce CrossAdapt (see Fig. 1 for an overview), an ap-
proach for training a monocular depth-estimation network in
the multi-target domain adaptation (MTDA) setting.

2.1. Problem Statement

We are given a set of fully labeled source-domain samples
Dy = {(x5,y5)}, where x5 € RTXWX3 represents an im-
age in the source domain and y§ € R¥*W the correspond-
ing ground-truth depth map. In addition, we are given T’
sets of unlabeled samples D; ,, = {xf" ., where :Efn €
RAXWX3 represents an image from the n-th target domain
(n < T). Our goal is to train a robust monocular depth es-
timation model that can perform well on all of the target do-
mains. This will require combining supervised training for
depth estimation on the source domain and domain adapta-
tion strategies capable of using the unlabeled target data.
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Fig. 1. Overview of CrossAdapt.

2.2. Approach Overview

During training, monocular video sequences from the source
and target domains are passed into the shared encoder F
(Fig. 1 (a)). The encoded features from both source and tar-
get are then passed into a depth estimation teacher decoder
Dr, which yields estimated depth maps for both inputs,
and the source-target discriminator, which encourages the
network to learn domain-invariant features (Fig. 1 (c)). In
addition, temporally adjacent target frames are passed into a
pose regressor Dp and a relative camera pose is estimated.
The estimated pose and depth are combined, along with the
known camera intrinsic parameters and the uncertainty map
(Fig. 1 (d)), to compute the reconstruction loss. We then
minimize the KL divergence between the predictions of the
student decoder Dg and the teacher decoder D (Fig. 1 (b)).
This student decoder Dg is the final model to be used for
evaluation. Our model is trained towards four objectives:
supervised depth estimation, adversarial loss, alignment loss,
and uncertainty-guided reconstruction loss. We describe them
in the following sections.

2.3. Supervised Depth Estimation

For source imagery, where ground-truth depth is available,
our proposed CrossAdapt framework is trained in a super-
vised manner using a depth estimation loss. The decoder
takes as inputs the features extracted from the image = and
predicts the depth map y°.

Here, we minimize the ¢, distance between the predicted
depth ¢° and the ground-truth depth y°:

ﬁsuperm'sed = ||yS - gs||2. (1)

2.4. Adversarial Knowledge Distillation

One of the key goals of domain adaptation is to encourage the
network to learn domain-invariant features. To achieve that
goal, we use a source-target discriminator Dp to classify the
output feature Fr that comes from the penultimate layer of
D as either source (1) or target (0) by using binary cross
entropy Lpcg.

Edis = LBCE(FTa l)som“ce + LBCE(FTa O)target~ (2)

Our network has two goals: one is to predict accurate
depth maps, and the other one is to fool the discriminator. To
achieve the second goal, here we use the response from the
discriminator in the subsequent loss and always encourage it
to predict source (1) for all inputs. Note that the input feature
of the discriminator comes from the penultimate layer of the
teacher decoder.

‘Cea:tractor = LBCE(DD(FT)7 1) (3)

And the total adversarial loss is represented as:
L:adv = »Cdis + )\adv»cea:tractor~ (4)

To distill knowledge from the teacher decoder the to student
decoder, we use the output of the penultimate layer the teacher
decoder Fr, and the student decoder Fls to compute the KL
divergence.

Latign = Lx.(Fr, Fs). &)

We pass mini-batches of source-target pairs into the
model, repeat the process mentioned above, and keep alter-
nating between different targets during training. The student
decoder gradually learns from the teacher decoder and tends
to be able to represent features from all target sets in the end.
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2.5. Uncertainty-Guided Reconstruction

To exploit the temporal information in the input video se-
quences in the unlabeled target sets. and learn domain-
invariant features from various targets, we follow the state-
of-the-art self-supervised depth estimation work [2] and re-
construct the appearance of a target image from the viewpoint
of an adjacent image by combining predicted depth, pose, and
known camera intrinsic parameters. We found that naively
applying this will cause inaccurate predictions, especially for
fast-changing pixels in the temporal sequences. To overcome
this, we propose to estimate an uncertainty map by taking the
average of the reconstruction error maps of an input frame
and its 4 adjacent frames and using that to further guide the
reconstruction loss.

The pose regressor in our model yields the relative pose
T, for each source view image [/, with respect to the tar-
get image I;, from a consecutive monocular video sequence,
by taking a pair of features extracted from (I3, I;/) as the in-
puts. The depth estimation decoder predicts a dense depth
map D, simultaneously. Our goal is to minimize the recon-
struction error L,., where

Lo = Y L= Tuill. (6)
t/

The image reconstruction loss, in our case, is the ¢; distance
in pixel space. By using the source image Iy, the predicted
depth Dy, the relative pose 7T;_,4/, and the camera intrinsic
parameters K, we can reconstruct the target image [; by:

Toe = To(proj(Di, T K)). (D)

where proj() are the resulting 2D coordinates of the projected
depths Dy in I, and () is the sampling operator.

To reduce noise in the prediction, we use edge-aware
smoothness [3, 2]:

Ly = [0.d;|e” %0 4|9, dy|e” 190 (8)

where d} = d;/d; is the mean-normalized inverse depth to
discourage shrinking of the estimated depth. The complete
self-supervised loss can be represented as:

£/

recon

- Lr + )\sLs (9)

We propose to estimate uncertainty maps by computing
the reconstruction error map generated from [; and its N (in
this case N=4 is used) adjacent frames Iy 1, [y42, I;—1, I;—2.
Following Eq 7, the uncertainty map is estimated by taking
the average of all the adjacent reconstruction error maps:

1 N—-1
U =+ ; [T, 5t — |- (10)

Note that the estimated uncertainty maps highlight drastically
changing pixels (see Fig. 2 for illustration), e.g., edges of

buildings. Therefore, those pixels with higher uncertainty are
down-weighted in the reconstruction loss:

AL
‘Crecon = [ _recon L . 11
U, + Liecon (11)

2.6. Overall Loss Function

The overall loss function of the proposed CrossAdapt frame-
work is the weighted sum of the loss functions mentioned
above and can be written as follows:

L= Esupe'r'uised + O‘l‘cudv + a2£align + Oé?wc'recon- (12)

3. EVALUATION

3.1. Implementation Details

We implement our model using PyTorch. We follow the
MTDA protocols and report results on two adaptation scenar-
ios: 1-source—2-target scenario and 1-source— 3-target sce-
nario. Following the existing state-of-the-art methods [2, 4],
we use a similar U-Net style architecture and adopt the
ResNet-18 as the feature extraction backbone to ensure a fair
comparison. All networks are pre-trained on ImageNet. We
follow the same training protocol used in Monodepth2 [2],
with a learning rate of 10~% for the first 15 epochs which is
then dropped to 10~ for the rest the training process. For
hyperparameters, the adversarial term \,q4, is set to 1.0, the
smoothness term A, is set to 0.001, and the reconstruction
term A, is set to 0.01. For the overall loss function, we set oy
and a» to 0.1 and a3 0.01 to maintain a balance between each
term during training. We evaluate on four diverse datasets:
KITTI [5], Virtual KITTI [6], UAVid China [7], and UAVid
Germany [7]. For data pre-processing, we resize all input
images to 640 x 192.

3.2. Experimental Results

We compare our method with three state-of-the-art baselines,
including a self-supervised depth estimation method Mon-
odepth2 [2], a domain adaption method CoMoDA [4], and
a multi-domain segmentation model MTKT [8]. We summa-
rize the comparisons in Table 1 and 2. We report four metrics:
41 (p), ¢1 (n), S (p), and S (n). ¢1 (p)/(n) represents the ¢; error
between the target image and the reconstructed target image
from the previous(p)/next(n) frame. S (p) and S (n) represent
the similarity metric SSIM, which are reported as the SSIM
loss (1-SSIM) in the tables. We use KITTI as the source for
all the adaptation scenarios since it contains the most com-
plete depth annotations. For the 1-source—2-targets scenario,
we use both UAVid China and UAVid Germany as targets
to evaluate the model’s ability to handle extreme viewpoint
changes. Both quantitative results (Table 1) and qualitative
results (Fig. 2) demonstrate the effectiveness of our model.
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Fig. 2. Tllustration of the uncertainty maps. The 1st row
shows the input images, the 2nd row shows the predicted
depth maps, and the last row shows the estimated uncertainty
maps, which mostly highlight rapidly-changing pixel regions
including vehicles and building edges.

For the 1-source—3-targets scenario, we use UAVid China,
UAVid Germany, and Virtual KITTI as targets. The results
are listed in Table 2. We also conduct an ablation study for
the first scenario (1—2), listed in Table 1. CrossAdapt (w/o 1)
shows the performance of our model without using the recon-
struction loss, and CrossAdapt (w/o u) shows the results with-
out using the uncertainty guidance. The experiments show
that the self-supervised reconstruction loss significantly im-
proved the performance and the uncertainty guidance slightly
boosted the performance when it was applied together with
the reconstruction loss.

Table 1. KITTI—UAVid China + UAVid Germany

Target Method liy(p) f1(m) S S
Monodepth2 [2]  0.1230 0.1261 0.3181 0.3226
CoMoDA [4] 0.1193 0.1042 0.2901 0.3009

g MTKT [8] 0.0812 0.0833 0.2216 0.2305
CrossAdapt (w/or) 0.0910 0.0907 0.2270 0.2299
CrossAdapt (w/o u) 0.0629 0.0651 0.1876 0.1841
CrossAdapt (Ours) 0.0620 0.0513 0.1702 0.1788
Monodepth2 [2]  0.1861 0.1873 0.3909 0.3981

. CoMoDA [4] 0.1741 0.1725 0.3676 0.3755
g MTKT [8] 0.1785 0.1680 0.3601 0.3761
§ CrossAdapt (w/or) 0.1801 0.1795 0.3644 0.3606
O CrossAdapt (w/ou) 0.1581 0.1526 0.3511 0.3537

CrossAdapt (Ours) 0.1468 0.1541 0.3488 0.3412

Table 2. KITTI—-UAVid China + UAVid Germany + Virtual
KITTI

Target Method LHipp Litm) S S

Monodepth2 [2]  0.1487 0.1401 0.3590 0.3574

.g CoMoDA [4] 0.1386 0.1344 0.3067 0.3156
$ MTKT [8] 0.1345 0.1509 0.2687 0.2459

CrossAdapt (Ours) 0.0918 0.0927 0.2141 0.2108
> Monodepth2 [2]  0.1762 0.1705 0.3921 0.3700
g CoMoDA [4] 0.1676 0.1609 0.3822 0.3850
5 MTKT [8] 0.1887 0.1654 0.3709 0.3885
O CrossAdapt (Ours) 0.1531 0.1676 0.3596 0.3677
—  Monodepth2 [2]  0.1648 0.1732 0.3390 0.3371
E CoMoDA [4] 0.1731 0.1704 0.3219 0.3232
E MTKT [8] 0.1666 0.1796 0.3395 0.3368

CrossAdapt (Ours) 0.1634 0.1681 0.3183 0.3210

4. CONCLUSION

We introduced a novel multi-target depth estimation frame-
work. Our approach makes it possible to train a unified model
for multiple scenarios simultaneously.
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