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ABSTRACT

We propose a novel framework for weakly supervised seman-
tic segmentation from aerial images. Instead of requiring la-
bels for every pixel, our method only requires a bounding box
for each building and leverages domain information to trans-
late these into pixel-level predictions. We convert the bound-
ing boxes into probabilistic masks, each represented using a
bivariate Gaussian distribution. We propose a loss function
that encompasses our domain knowledge that the bounding
box is an upper bound for the object it contains. Combining
these two elements significantly improves over many baseline
methods. We show extensive results on a recent, large-scale
dataset prepared by the United Nations Global Pulse and com-
pare with several baselines.

Index Terms— Semantic segmentation, building detec-
tion, weakly supervised learning

1. INTRODUCTION

Overhead images are collected at an astonishingly high fre-
quency by many organizations. This relatively new image
source is a convenient tool for several applications, rang-
ing from environmental monitoring [1], detecting marine
animals [2], identification of vegetation [3], land cover classi-
fication [4], and forecasting commercial activity [5]. With the
capability to capture large areas quickly, overhead images are
an ideal source for disaster response. While recent advances
in machine learning have led to rapidly improving image
understanding systems, the process of manually annotating
images for training of convolutional neural networks (CNN)
is slow. We aim to address this issue by requiring low fewer
annotations. Even though pixel-wise building segmentation
networks provide rich information, they require complex,
pixel-wise annotation, usually as polygons [6]. On the other
hand, it is much easier to mark horizontal bounding boxes
for objects of interest and to model the problem as object
detection. But output of object detection (bounding box) is
not as rich as the dense pixel-wise prediction of segmentation
networks. In this work, we aim to bridge this gap by pre-
senting a method to train pixel-wise segmentation network by
utilizing only bounding box annotations.
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Fig. 1: Overview of the proposed approach. We propose a
novel method of generating Gaussian masks from horizontal
bounding boxes to train the weakly supervised segmentation
network. Our proposed one-sided loss function leverages the
domain knowledge.

A conventional method of dealing with limited annota-
tions is to use fine-tuning [7], a form of transfer learning.
Transfer learning has been used in overhead images. For ex-
ample, Yan et al. [8] used fine-tuning to identify ice in the
arctic ocean. However, there are three main drawbacks of
fine-tuning: 1) as explained by Yosinski et al. [7], retraining a
part of the network is not trivial and several factors including
data and classes impact the final performance, 2) fine-tuning a
pre-trained model requires some fully labeled data and hence
increases time-to-deploy, and 3) recently, He et al. [9] have
shown through extensive experiments that fine-tuning primar-
ily speeds up training initially and does not significantly af-
fect the final performance. Keeping this in mind, we propose
an end-to-end weakly supervised training method, which re-
quires less amount of label annotation.

For natural images, there are several weakly supervised
methods for training per-pixel estimation with only bound-
ing region supervision. Dai et al. [10] proposed a method
to iteratively clean the bounding boxes to get better segmen-
tation masks for training. Khoreva et al. [11] introduced a
method to prepare better masks from bounding boxes using
multiple iterations of several algorithms, such as MCG [12]
and Grabcut [13]. Typically, weakly supervised approaches
use multiple passes for every bounding box to clean the data



and solve a major problem of overlapping objects. In case of
aerial images, this problem is virtually nonexistent: there is
no overlap of bounding boxes in typical scenarios. For ex-
ample, land cover segmentation has exclusively one label per
region (in contrast to the possibility of overlapping image re-
gions for different objects at different distances). Based on
this fact, we are able to propose a simple training method that
does not require iterative cleaning of bounding boxes.

In this paper, we propose a novel method of generating
probabilistic masks as well as a novel loss function that al-
low us to predict dense, pixel-wise predictions while requiring
only bounding boxes for training. We show our results on the
recently released, large-scale dataset of overhead images [14]
by humanity and inclusion and UN Global Pulse for disas-
ter response. Our main contributions are 1) proposed proba-
bilistic masks using bivariate Gaussian distribution, and 2) a
novel one-sided loss function that leverages domain knowl-
edge, and 3) our results on recently released large-scale, real-
world dataset that include several baselines and a surprising
finding that a naı̈ve baseline performs reasonably well.

2. OUR APPROACH

2.1. Probabilistic Masks

We use bounding boxes to generate a pixel-wise dense mask
for every image. As shown in Section 4, generating binary
masks from bounding boxes is not the optimal solution. In-
stead, we use a bivariate Gaussian distribution to model prob-
abilistic masks. This is motivated by the fact that pixels near
the center of a bounding box are more likely to be a build-
ing than those around the edges due to possible misalignment
of building and the horizontal bounding box. Since we know
that every box contains a building, and we are more certain of
a pixel near the center being a building than pixels around the
edges, we set the mean of the Gaussian distribution at the cen-
ter of the bounding box. For a bounding box with dimensions
w × h, we use the following Gaussian distribution to sample
value for all pixels within the bounding box:
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where (x, y) are the pixel coordinates, (µx, µy) is the mean
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with a hyper-parameter scaling factor sG. Because of pa-
rameterization in equation (2), mask values of points at

edges are independent of the bounding box dimensions.
Finally, we normalize the Gaussian mask by p(x, y) ←
p(x, y)/max(p(x, y)). The normalized form has maximum
value of one whereas the original bivariate Gaussian sums to
1 (giving much smaller values to individual pixels).

2.2. One-sided Loss Function

We propose a loss function that represents the knowledge of
the building within each bounding box. While we know that
building area is less than or equal to the bounding box area,
we don’t know the exact fraction of the horizontal bounding
box that is occupied by the building. So, a loss function that
tries the predicted building area to be equal to a fraction, say
0.8, of the bounding box is incomplete: it is possible for some
cases that area of bounding box is very close to the building
area (in case when a building occupies most of the box). To
leverage this knowledge, we propose the following one-sided
loss function

L(O,OGT ) = k1δ(FP ) + k2δ(FN) + LA (3)

LA = k3 ·
max(sAAGT −A, 0)

AGT
· (FN) (4)

where O and OGT are the network output and the ground
truth (Gaussian) masks on the interval [0, 1]. A =

∑
O and

AGT =
∑
OGT are the areas of output and ground-truth

masks. sA is a hyper-parameter within the interval (0, 1].
FP = O · (1 − OGT ) and FN = (1 − O) · OGT are false
positive and false negative predictions, respectively, and k1,
k2, and k3 are hyper-parameters which control the scale of
different loss terms. δ(x) can be any loss function, we use
mean squared error with respect to 0: δ(x) = ||x−0||2. False
positives and false negatives, with respect to the bounding
boxes are penalized, as shown in equation (3). Equation (4)
states that if predicted area is greater than sA (say 0.8) of the
ground-truth area, there is no penalty. Hence, a penalty is
applied only if the output area is less than a particular frac-
tion (sA) of the ground-truth area. Further, the area penalty
LAisnormalizedbyareaofboundingboxandappliedtofalsenegativesonly.

3. EXPERIMENTAL SETUP

We conducted all experiments using a variant of U-Net [15]
with half the feature maps as compared to the original U-Net.
We have released our code 1.

3.1. Dataset and Evaluation Metric

We use the recently introduced mapping challenge dataset [14].
The dataset contains 280 741 training and 60 317 validation

1http://github.com/UkyVision/
weakly-supervised-segmentation

http://github.com/UkyVision/weakly-supervised-segmentation
http://github.com/UkyVision/weakly-supervised-segmentation


RGB images of size 300× 300. The original dataset has been
prepared for instance segmentation of buildings from satellite
images. For proof of concept of our proposed approach, we
use horizontal rectangular bounding boxes for training. To
evaluate with ground-truth labels, we convert all instances
annotations to prepare a dense, binary mask, as typically
used for evaluation of semantic segmentation networks. For
quantitative results, we use Jaccard index, also known as in-
tersection over union (IoU) of the building pixels, a common
metric for segmentation tasks.

3.2. Implementation Details

We implemented the proposed method in Keras. We used
Adam optimizer [16] with learning rate of 5e−4, β1 = 0.9,
and β2 = 0.999. The network was trained from scratch for
52 638 iterations (3 epochs) with batch size 16.

For scaling of Gaussian masks, we use scale factor sG =
2.5 - this gives normalized p(x, y) of 0.75 at midpoints of all
edges of the bounding box: (µx±w/2, 0) and (0, µy ±h/2).
We use k1 = 1, k2 = 0.8, and k3 = 0.3. For area scaling, we
use sA = 0.8, implying that there is no penalty if predicted
area within a box is more than 80% of the bounding box.
We used non-exhaustive grid search to estimate these hyper-
parameters and we find that the final outcome is not very sen-
sitive to these, except higher values of sA which lead to de-
grading performance.In a nutshell, we have lower penalty for
false negatives (k2 = 0.8) than false positive (k1 = 1) but
we add extra penalty on false negatives (k3 = 0.3) if the pre-
dicted area is less than ground-truth area.

3.3. Baseline Methods

We use a naı̈ve baseline in which we convert bounding boxes
to binary masks and trained with cross-entropy loss. Sec-
ondly, we consider naı̈ve + one-sided in which we use bi-
nary masks but we use the proposed one-sided loss function
in equation (3). Motivated by the recent work [11], we also
use Grabcut [13] in several settings. First, we used oracle +
grabcut in which the bounding boxes are provided at the test
time and the unsupervised background subtraction method is
used to segment the region within bounding boxes. We also
use a oracle + grabcut2 in which it is indicated that inner 30%
is building and the grabcut algorithm only needs to segment
the remaining region of the bounding box. As a reference, we
provide results of fully supervised segmentation as well.

4. RESULTS

Quantitative results, shown in Table 1, reveal several interest-
ing observations. First, the oracle + grabcut methods perform
much worse, even though these methods know the bounding
boxes even at test time. oracle + grabcut and oracle + grab-
cut2 get IoU of 34.8% and 60.7% respectively. Second, the

Method Supervision Loss IoU(%)
Supervised Full

Masks
Cross-entropy 79.27

Oracle +
grabcut

Bounding
box

- 34.8

Oracle +
grabcut2

Bounding
box

- 60.7

Naı̈ve Bounding
box

Cross-entropy 70.25

Naı̈ve +
one-sided

Bounding
box

Proposed (3) 72.54

Ours full Gaussian
masks

Proposed (3) 74.34

Table 1: Quantitative results.
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Fig. 2: Qualitative results. We show input images (a), bi-
narized output masks using threshold of 0.5 (b), raw output
masks (c), and the ground-truth segmentation masks (d).

naı̈ve baseline performs reasonably well by getting 70.25%
IoU. Usefulness of our proposed one-sided loss function is
highlighted by superior performance of naı̈ve + one-sided
method that achieves 72.54% IoU. Finally, we show that ours-
full gets the best IoU of 74.34% among all the weakly super-
vised methods.

Qualitative results are shown in Figure 2. Currently, the
limitation of our method is that prediction is sometimes big-
ger than true mask, as shown in last row of Figure 2. The
prediction can be bigger than true masks because the net-
work is trained on bounding boxes which are often bigger
than buildings. However, we can see that around the edges,
prediction have lower values (in greener shade) highlighting



the semantic understanding of the network as well as leaving
room for further improvement by marking such regions with
low scores.

5. CONCLUSION

We presented weakly supervised method for building seg-
mentation. We show that representing uncertainty of ob-
jects within bounding boxes through a Gaussian probabilistic
masks gives better results. The proposed custom loss func-
tion boosts performance by leveraging domain knowledge.
Because objects are non-overlapping in aerial images, we
show that our simple method gives good results without re-
quiring multiple iterations over each image. A limitation of
our work is that the output masks are sometimes bigger than
true segmentation masks. There are several areas for future
work: extending to the multi-class case and reducing the
over-segmentation problem.
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